Derived Invariance of Higher Structures on the Hochschild Complex

نویسنده

  • BERNHARD KELLER
چکیده

We show that derived equivalences preserve the homotopy type of the (cohomological) Hochschild complex as a B∞-algebra. More generally, we prove that, as an object of the homotopy category of B∞-algebras, the Hochschild complex is contravariant with respect to fully faithful derived tensor functors. We also show that the Hochschild complexes of a Koszul algebra and its dual are homotopy equivalent as B∞-algebras. In particular, their Hochschild cohomologies are isomorphic as algebras, which is a recent result by R.-O. Buchweitz [4], and as Lie algebras. Our methods also yield a derived invariant definition of the Hochschild complex of an exact category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Fine Hochschild Invariants of Derived Categories for Symmetric Algebras

Let A be a symmetric k-algebra over a perfect field k. Külshammer defined for any integer n a mapping ζn on the degree 0 Hochschild cohomology and a mapping κn on the degree 0 Hochschild homology of A as adjoint mappings of the respective p-power mappings with respect to the symmetrizing bilinear form. In an earlier paper it is shown that ζn is invariant under derived equivalences. In the prese...

متن کامل

Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions

In this article we prove derived invariance of Hochschild-Mitchell homology and cohomology and we extend to k-linear categories a result by Barot and Lenzing concerning derived equivalences and one-point extensions. We also prove the existence of a long exact sequence à la Happel and we give a generalization of this result which provides an alternative approach. 2000 Mathematics Subject Classif...

متن کامل

On algebraic structures of the Hochschild complex

We first review various known algebraic structures on the Hochschild (co)homology of a differential graded algebras under weak Poincaré duality hypothesis, such as CalabiYau algebras, derived Poincaré duality algebras and closed Frobenius algebras. This includes a BV-algebra structure on HH(A,A) or HH(A,A), which in the latter case is an extension of the natural Gerstenhaber structure on HH(A,A...

متن کامل

Invariance of the barycentric subdivision of a simplicial complex

‎In this paper we prove that a simplicial complex is determined‎ ‎uniquely up to isomorphism by its barycentric subdivision as well as‎ ‎its comparability graph‎. ‎We also put together several algebraic‎, ‎combinatorial and topological invariants of simplicial complexes‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004